If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2=3
We move all terms to the left:
d^2-(3)=0
a = 1; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·1·(-3)
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3}}{2*1}=\frac{0-2\sqrt{3}}{2} =-\frac{2\sqrt{3}}{2} =-\sqrt{3} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3}}{2*1}=\frac{0+2\sqrt{3}}{2} =\frac{2\sqrt{3}}{2} =\sqrt{3} $
| 8x+8+8x=4x | | p/5-2=25 | | 5(12-x)=65 | | d/8-22=-17 | | z^2+25=25 | | 5x+9=3x–17 | | 8(b+48)=40 | | y+9.4=−12.2. | | y=2,8 | | 25=3(5x−10) | | 28-6b=-20 | | f^2+29=49 | | y-(-6)=-76 | | x+6/5=10 | | q^2+84=0 | | 2(3x=5)=46 | | 25=d-928/2 | | 36+12=x | | 8x-12+8x-32=4x+2 | | 6p/5=3p/2+4 | | 972=27(u+18) | | 3(c+16)=78 | | t/4-4=3 | | Px+Q=−19x+18 | | k-12=31 | | 5x/2=4x/3-7 | | 5.99+1.25r=20.99 | | 31=m/7+24 | | 6-6x=7x-10-15 | | -u/4=52 | | 8(x+6)=80 | | 3/11y+5=10 |